What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans.
نویسندگان
چکیده
Constraining photosynthetic energy conversion efficiency in nature is challenging. In principle, two yield measurements must be made simultaneously: photochemistry, fluorescence and/or thermal dissipation. We constructed two different, extremely sensitive and precise active fluorometers: one measures the quantum yield of photochemistry from changes in variable fluorescence, the other measures fluorescence lifetimes in the picosecond time domain. By deploying the pair of instruments on eight transoceanic cruises over six years, we obtained over 200 000 measurements of fluorescence yields and lifetimes from surface waters in five ocean basins. Our results revealed that the average quantum yield of photochemistry was approximately 0.35 while the average quantum yield of fluorescence was approximately 0.07. Thus, closure on the energy budget suggests that, on average, approximately 58% of the photons absorbed by phytoplankton in the world oceans are dissipated as heat. This extraordinary inefficiency is associated with the paucity of nutrients in the upper ocean, especially dissolved inorganic nitrogen and iron. Our results strongly suggest that, in nature, most of the time, most of the phytoplankton community operates at approximately half of its maximal photosynthetic energy conversion efficiency because nutrients limit the synthesis or function of essential components in the photosynthetic apparatus.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
منابع مشابه
Fundamental Limits on Wavelength, Efficiency and Yield of the Charge Separation Triad
In an attempt to optimize a high yield, high efficiency artificial photosynthetic protein we have discovered unique energy and spatial architecture limits which apply to all light-activated photosynthetic systems. We have generated an analytical solution for the time behavior of the core three cofactor charge separation element in photosynthesis, the photosynthetic cofactor triad, and explored ...
متن کاملEngineering photosynthetic light capture: impacts on improved solar energy to biomass conversion.
The main function of the photosynthetic process is to capture solar energy and to store it in the form of chemical 'fuels'. Increasingly, the photosynthetic machinery is being used for the production of biofuels such as bio-ethanol, biodiesel and bio-H2. Fuel production efficiency is directly dependent on the solar photon capture and conversion efficiency of the system. Green algae (e.g. Chlamy...
متن کاملInverted-region electron transfer as a mechanism for enhancing photosynthetic solar energy conversion efficiency.
In all photosynthetic organisms, light energy is used to drive electrons from a donor chlorophyll species via a series of acceptors across a biological membrane. These light-induced electron-transfer processes display a remarkably high quantum efficiency, indicating a near-complete inhibition of unproductive charge recombination reactions. It has been suggested that unproductive charge recombin...
متن کاملWhat is the maximum efficiency with which photosynthesis can convert solar energy into biomass?
Photosynthesis is the source of our food and fiber. Increasing world population, economic development, and diminishing land resources forecast that a doubling of productivity is critical in meeting agricultural demand before the end of this century. A starting point for evaluating the global potential to meet this goal is establishing the maximum efficiency of photosynthetic solar energy conver...
متن کاملCreating electrochemical gradients by light: from bio-inspired concepts to photoelectric conversion.
Light is harvested by natural photosynthetic systems to generate electrochemical gradients that power various reactions. Implementing nature's lessons in photosynthesis holds great promise for technological advances. With a focus on designs and concepts, recent progress in generating electrochemical gradients by light, mimicking the two general types of photosynthetic centers in nature that mak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 372 1730 شماره
صفحات -
تاریخ انتشار 2017